Oliver Quinlan, Author at Raspberry Pi Foundation https://www.raspberrypi.org/blog/author/oliverquinlan/ Teach, learn and make with Raspberry Pi Thu, 25 Nov 2021 15:57:38 +0000 en-GB hourly 1 https://wordpress.org/?v=6.7.2 https://www.raspberrypi.org/app/uploads/2020/06/cropped-raspberrry_pi_logo-100x100.png Oliver Quinlan, Author at Raspberry Pi Foundation https://www.raspberrypi.org/blog/author/oliverquinlan/ 32 32 Exploring how culture and computing intersect https://www.raspberrypi.org/blog/culture-computing-stem-education-diversity-research-seminar/ Tue, 03 Aug 2021 10:00:32 +0000 https://www.raspberrypi.org/?p=73385 It can be easy to think of science, technology, engineering, and maths (STEM) as fields that develop in a linear way, always progressing towards ever better solutions and approaches. Of course, alternative solutions are posed to all sorts of problems, but in western culture, those solutions that did not take hold are sometimes seen as…

The post Exploring how culture and computing intersect appeared first on Raspberry Pi Foundation.

]]>
It can be easy to think of science, technology, engineering, and maths (STEM) as fields that develop in a linear way, always progressing towards ever better solutions and approaches. Of course, alternative solutions are posed to all sorts of problems, but in western culture, those solutions that did not take hold are sometimes seen as the approaches that were ‘wrong’ or mistaken, and that eventually gave way to the ‘right’ approaches. A culture that includes the belief that there is only one ‘right’ way can be alienating to anyone who sees the world in a different way.

Ron Eglash.
Dr Ron Eglash, University of Michigan

Dr Ron Eglash from the University of Michigan explored the intersections of diverse cultural ideas and computing in his talk at the final research seminar in our series about diversity and inclusion (see below for the recorded video). His work and insights show us how we might think about diversity in computing as being dependent on the diversity of cultural concepts and beliefs that can underpin the subject. Ron also shared free resources for educators who want to help their students learn about STEM while exploring cultural ideas.

Where do our ideas about computing and STEM come from?

Ron’s talk explored the overlaps of technology, culture, and society. In his research work, Ron has facilitated collaborations across the world between STEM students and people from indigenous cultures, opening up computing to people who have different backgrounds and different ways of seeing the world and, in the process, revealing many complex assumptions that different cultures have about computing and technology.

Ron’s work challenges some of the assumptions in western culture about technological knowledge. He started his talk by showing the evolution of knowledge as a branching set of possibilities and ideas that societies choose to move forward with or leave behind. To illustrate, he gave examples of different concepts of mathematics that western society has taken on board, refined, or discarded throughout its history, demonstrating that there are different versions of mathematics we could have had but chose not to.

A branching diagram showing a very simplified historical relationship of the knowledge systems of Native American, Asian, African, and European people. Created by Ron Eglash.
A simplified view of the relationships of knowledge systems across the world, as shown by Ron in his talk.

These different choices in adoption and exploration of ideas, Ron continued, are more evident when one looks at the knowledge systems of different cultures side by side: different knowledge systems represent different paths that groups of people have chosen — not in totality but as the result of smaller decisions that select which ideas will be influential and which will be eliminated.

What ideas pattern our cultures?

One idea that western society has chosen, and that Ron highlighted for us, is the extraction of value. This is something we can see across this society, and it’s a powerful idea that fundamentally shapes how many of us think about the world. We extract value from the natural world in the way we exploit raw materials. We extract value from labour through the organisation of working arrangements that we have made the norm. And we extract value from social relationships through the online social media platforms, online games, and other digital tools that have so quickly become a central part of billions of people’s lives.

Traditional African art: by using patterns of recursive and non-linear scaling, artists intentionally symbolised the bottom-up and circular ideas permeating their culture.
Examples of indigenous visual art patterned by circular and bottom-up principles, as shown by Ron in his talk.

But western culture, with its particular knowledge system and core tenet of value extraction, represents just one possible way of social and technical development. In nature, systems do not extract value, they circulate it: value moves in a recursive loop as organisms grow, die, and are subsumed back into the ecosystem. Many indigenous cultures have developed within this framework of circulating value. The possible benefits of a circular economy are becoming a topic of discussion in western society, and we would do well to remember that this concept is not western in origin: other cultures have been practicing it for a long time, a point Ron made clear in his talk. And as Ron showed us through his research, the framework of circulating value permeates various indigenous cultures in ways that go beyond approaches such as sustainable agriculture, and thereby creates repeating, fractal patterns in cultural artefacts at different scales, from artworks, to the way settlements are organised, to philosophical ideas.

Close-up photo of an Angelica flowerhead.
Many natural phenomena show fractal patterns, for example this Angelica flowerhead, a sphere of spheres. (Photo by Chiswick Chap – Own work, CC BY-SA 3.0)

In nature, there are many examples of fractal geometry because of biological and chemical phenomena of bottom-up growth and replication. Ron shared images gathered during his research that highlight that fractal patterns are also clearly visible in, for example, traditional African art: by using visual patterns of recursive and non-linear scaling, artists intentionally symbolised the bottom-up and circular ideas permeating their culture. African cultural concepts of recursion and non-linearity, which were also brought to the Americas during the transatlantic slave trade, can be seen today in, for example, cornrow hair braiding, quilting, growing traditions, and spiritual practices.

Examples of hair braiding patterns  informed by African cultural traditions.
Examples of hair braiding patterns informed by African cultural traditions, as shown by Ron in his talk.

Computing activities based on circulation of value

The links between indigenous cultural concepts and computing algorithms are many. To explore these in the context of education, Ron and his team have worked in collaboration with members of indigenous communities to develop Culturally Situated Design Tools (CSDT), a suite of computing and STEM activities and learning resources that allow young people of a range of ages to discover the relationship between computing and programming concepts and cultural ideas that trace back to indigenous cultures. The CSDT development process Ron described involved genuine collaboration: seeking ‘cultural permission’ from communities; deeply understanding the cultural concepts behind the artefacts that were being developed; and creating tools that not only allow students to explore traditional designs and artefacts but also give them the scope to design their own original artefacts and to actively contribute to communities’ cultural practices.

Screenshot from the Culturally Situated Design Tools website showing Cornrow Curves Tutorials.
Screenshot from the Culturally Situated Design Tools website showing Cornrow Curves tutorials. We also want to highlight Prof Audrey G Bennett as co-creator of the Cornrow Curves resources.

Ron underlined in his talk how important it is not to see activities like CSDT as a lure to ‘trick’ young people into engaging with STEM classes; the intention is not using them as a veneer to interest more young people in industries underpinned by an extractive world view. Instead, circular and bottom-up concepts are an alternative way of seeing how technology can be used to influence and construct the world.

Returning creative contributions

As such, an important aspect of the pedagogy of Culturally Situated Design Tools is returning creative contributions to the community whose concepts or artefacts are being explored in each activity. The aim is to create a generative cycle of STEM engagement, and Ron demonstrated how this can work by sharing more about a project he conducted with STEM students in Albany, NY. Students began the project by exploring cornrow design simulations. They brought these out of the computer, out of their schools, and into local braiding shops by producing 3D-printed mannequins featuring their cornrow designs. Through engaging with the braiding shop owners, the students learned that the owners had challenges to do with the pH level of hair products, and this led to the students producing pH testing kits for them. The practical applications benefitted the communities connected to the braiding shops and inspired more student interest in the project — thus, a circular, mutually beneficial process of engagement emerged.

A generative cycle of STEM education, in which students learn with activities based on cultural artefacts and then use their learning to give back to the community the artefacts came from.
A generative cycle of STEM education, in which students learn with activities based on cultural artefacts and then use their learning to give back to the community the artefacts came from. As shown by Ron in his talk.

Importantly, the STEM activities that Ron and his collaborators have developed cannot be separated from their cultural context. This way of teaching STEM is not about recruiting young people to become software developers or other tech professionals, but instead about giving them the skills to be creative contributors and problem solvers within communities so that they can help promote the circulation of value.

Rethinking diversity

I have long been enthusiastic about the potential of computing and digital making as a tool for many disciplines, and Ron’s talk made me consider what this might mean at a much deeper level than providing different routes into computing. There is a lot of discussion about how we need to increase diversity in the STEM field to make the field more equitable and able to positively contribute to society, but Ron’s presentation challenged me to think about the cultural assumptions that shape the nature of STEM, and how these influence who engages with the field. Increasing diversity and inclusion in computing and STEM is not just a case of making opportunities open to everyone, but about actually re-shaping the nature of the field so it can be equitable in its interactions with ecological systems, cultures, and human experiences.

Do watch the video of Ron’s presentation and the following Q&A for more on these concepts, examples of the computing activities and how to use them, and discussion of these fundamental ideas. You’ll find his presentation slides on our ‘previous seminars’ page.

You can find the resources Ron shared at csdt.org and generativejustice.org/projects. And together with a working group of teachers and academics, we’ve created a practical guide to culturally relevant and responsive computing in the classroom that we hope you’ll find useful.

Join us at our next online seminar

We are taking a break from our monthly research seminars in August! In the meantime, you can revisit our previous seminars about diversity and inclusion. On 7 September, we’ll be back to start our new seminar series focusing on AI, machine learning, and data science education, in partnership with The Alan Turing Institute. At these seminars, you’ll hear from a range of international speakers about current best practices in teaching young people the technical concepts and ethical considerations involved in these technologies. Do sign up and put the dates in your calendar!

The post Exploring how culture and computing intersect appeared first on Raspberry Pi Foundation.

]]>
PRIMM: encouraging talk in programming lessons https://www.raspberrypi.org/blog/primm-talk-in-programming-lessons-research-seminar/ https://www.raspberrypi.org/blog/primm-talk-in-programming-lessons-research-seminar/#comments Fri, 13 Nov 2020 10:15:00 +0000 https://www.raspberrypi.org/?p=65416 Whenever you learn a new subject or skill, at some point you need to pick up the particular language that goes with that domain. And the only way to really feel comfortable with this language is to practice using it. It’s exactly the same when learning programming. In our latest research seminar, we focused on…

The post PRIMM: encouraging talk in programming lessons appeared first on Raspberry Pi Foundation.

]]>
Whenever you learn a new subject or skill, at some point you need to pick up the particular language that goes with that domain. And the only way to really feel comfortable with this language is to practice using it. It’s exactly the same when learning programming.

A girl doing Scratch coding in a Code Club classroom

In our latest research seminar, we focused on how we educators and our students can talk about programming. The seminar presentation was given by our Chief Learning Officer, Dr Sue Sentance. She shared the work she and her collaborators have done to develop a research-based approach to teaching programming called PRIMM, and to work with teachers to investigate the effects of PRIMM on students.

Sue Sentance

As well as providing a structure for programming lessons, Sue’s research on PRIMM helps us think about ways in which learners can investigate programs, start to understand how they work, and then gradually develop the language to talk about them themselves.

Productive talk for education

Sue began by taking us through the rich history of educational research into language and dialogue. This work has been heavily developed in science and mathematics education, as well as language and literacy.

In particular the work of Neil Mercer and colleagues has shown that students need guidance to develop and practice using language to reason, and that developing high-quality language improves understanding. The role of the teacher in this language development is vital.

Sue’s work draws on these insights to consider how language can be used to develop understanding in programming.

Why is programming challenging for beginners?

Sue identified shortcomings of some teaching approaches that are common in the computing classroom but may not be suitable for all beginners.

  • ‘Copy code’ activities for learners take a long time, lead to dreaded syntax errors, and don’t necessarily build more understanding.
  • When teachers model the process of writing a program, this can be very helpful, but for beginners there may still be a huge jump from being able to follow the modeling to being able to write a program from scratch themselves.

PRIMM was designed by Sue and her collaborators as a language-first approach where students begin not by writing code, but by reading it.

What is PRIMM?

PRIMM stands for ‘Predict, Run, Investigate, Modify, Make’. In this approach, rather than copying code or writing programs from scratch, beginners instead start by focussing on reading working code.

In the Predict stage, the teacher provides learners with example code to read, discuss, and make output predictions about. Next, they run the code to see how the output compares to what they predicted. In the Investigate stage, the teacher sets activities for the learners to trace, annotate, explain, and talk about the code line by line, in order to help them understand what it does in detail.

In the seminar, Sue took us through a mini example of the stages of PRIMM where we predicted the output of Python Turtle code. You can follow along on the recording of the seminar to get the experience of what it feels like to work through this approach.

The impact of PRIMM on learning

The PRIMM approach is informed by research, and it is also the subject of research by Sue and her collaborators. They’ve conducted two studies to measure the effectiveness of PRIMM: an initial pilot, and a larger mixed-methods study with 13 teachers and 493 students with a control group.

The larger study used a pre and post test, and found that the group who experienced a PRIMM approach performed better on the tests than the control group. The researchers also collected a wealth of qualitative feedback from teachers. The feedback suggested that the approach can help students to develop a language to express their understanding of programming, and that there was much more productive peer conversation in the PRIMM lessons (sometimes this meant less talk, but at a more advanced level).

The PRIMM structure also gave some teachers a greater capacity to talk about the process of teaching programming. It facilitated the discussion of teaching ideas and learning approaches for the teachers, as well as developing language approaches that students used to learn programming concepts.

The research results suggest that learners taught using PRIMM appear to be developing the language skills to talk coherently about their programming. The effectiveness of PRIMM is also evidenced by the number of teachers who have taken up the approach, building in their own activities and in some cases remixing the PRIMM terminology to develop their own take on a language-first approach to teaching programming.

Future research will investigate in detail how PRIMM encourages productive talk in the classroom, and will link the approach to other work on semantic waves. (For more on semantic waves in computing education, see this seminar by Jane Waite and this symposium talk by Paul Curzon.)

Resources for educators who want to try PRIMM

If you would like to try out PRIMM with your learners, use our free support materials:

Join our next seminar

If you missed the seminar, you can find the presentation slides alongside the recording of Sue’s talk on our seminars page.

In our next seminar on Tuesday 1 December at 17:00–18:30 GMT / 12:00–13:30 ET / 9:00–10:30 PT / 18:00–19:30 CEST. Dr David Weintrop from the University of Maryland will be presenting on the role of block-based programming in computer science education. To join, simply sign up with your name and email address.

Once you’ve signed up, we’ll email you the seminar meeting link and instructions for joining. If you attended this past seminar, the link remains the same.

The post PRIMM: encouraging talk in programming lessons appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/primm-talk-in-programming-lessons-research-seminar/feed/ 2
Embedding computational thinking skills in our learning resources https://www.raspberrypi.org/blog/computational-thinking-skills-in-our-free-learning-resources/ https://www.raspberrypi.org/blog/computational-thinking-skills-in-our-free-learning-resources/#comments Wed, 23 Sep 2020 09:30:00 +0000 https://www.raspberrypi.org/?p=63554 Learning computing is fun, creative, and exploratory. It also involves understanding some powerful ideas about how computers work and gaining key skills for solving problems using computers. These ideas and skills are collected under the umbrella term ‘computational thinking’. When we create our online learning projects for young people, we think as much about how…

The post Embedding computational thinking skills in our learning resources appeared first on Raspberry Pi Foundation.

]]>
Learning computing is fun, creative, and exploratory. It also involves understanding some powerful ideas about how computers work and gaining key skills for solving problems using computers. These ideas and skills are collected under the umbrella term ‘computational thinking’.

When we create our online learning projects for young people, we think as much about how to get across these powerful computational thinking concepts as we do about making the projects fun and engaging. To help us do this, we have put together a computational thinking framework, which you can read right now.

What is computational thinking? A brief summary

Computational thinking is a set of ideas and skills that people can use to design systems that can be run on a computer. In our view, computational thinking comprises:

  • Decomposition
  • Algorithms
  • Patterns and generalisations
  • Abstraction
  • Evaluation
  • Data

All of these aspects are underpinned by logical thinking, the foundation of computational thinking.

What does computational thinking look like in practice?

In principle, the processes a computer performs can also be carried out by people. (To demonstrate this, computing educators have created a lot of ‘unplugged’ activities in which learners enact processes like computers do.) However, when we implement processes so that they can be run on a computer, we benefit from the huge processing power that computers can marshall to do certain types of activities.

A group of young people and educators smiling while engaging with a computer

Computers need instructions that are designed in very particular ways. Computational thinking includes the set of skills we use to design instructions computers can carry out. This skill set represents the ways we can logically approach problem solving; as computers can only solve problems using logical processes, to write programs that run on a computer, we need to use logical thinking approaches. For example, writing a computer program often requires the task the program revolves around to be broken down into smaller tasks that a computer can work through sequentially or in parallel. This approach, called decomposition, can also help people to think more clearly about computing problems: breaking down a problem into its constituent parts helps us understand the problem better.

Male teacher and male students at a computer

Understanding computational thinking supports people to take advantage of the way computers work to solve problems. Computers can run processes repeatedly and at amazing speeds. They can perform repetitive tasks that take a long time, or they can monitor states until conditions are met before performing a task. While computers sometimes appear to make decisions, they can only select from a range of pre-defined options. Designing systems that involve repetition and selection is another way of using computational thinking in practice.

Our computational thinking framework

Our team has been thinking about our approach to computational thinking for some time, and we have just published the framework we have developed to help us with this. It sets out the key areas of computational thinking, and then breaks these down into themes and learning objectives, which we build into our online projects and learning resources.

To develop this computational thinking framework, we worked with a group of academics and educators to make sure it is robust and useful for teaching and learning. The framework was also influenced by work from organisations such as Computing At School (CAS) in the UK, and the Computer Science Teachers’ Association (CSTA) in the USA.

We’ve been using the computational thinking framework to help us make sure we are building opportunities to learn about computational thinking into our learning resources. This framework is a first iteration, which we will review and revise based on experience and feedback.

We’re always keen to hear feedback from you in the community about how we shape our learning resources, so do let us know what you think about them and the framework in the comments.

The post Embedding computational thinking skills in our learning resources appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/computational-thinking-skills-in-our-free-learning-resources/feed/ 4
Testing young children’s computational thinking https://www.raspberrypi.org/blog/research-seminar-computational-thinking-test/ https://www.raspberrypi.org/blog/research-seminar-computational-thinking-test/#comments Thu, 16 Jul 2020 12:06:53 +0000 https://www.raspberrypi.org/?p=61286 Computational thinking (CT) comprises a set of skills that are fundamental to computing and being taught in more and more schools across the world. There has been much debate about the details of what CT is and how it should be approached in education, particularly for younger students.  In our research seminar this week, we…

The post Testing young children’s computational thinking appeared first on Raspberry Pi Foundation.

]]>
Computational thinking (CT) comprises a set of skills that are fundamental to computing and being taught in more and more schools across the world. There has been much debate about the details of what CT is and how it should be approached in education, particularly for younger students. 

A girl doing digital making on a tablet

In our research seminar this week, we were joined by María Zapata Cáceres from the Universidad Rey Juan Carlos in Madrid. María shared research she and her colleagues have done around CT. Specifically, she presented work on how we can understand what CT skills young children are developing. Building on existing work on assessing CT, she and her colleagues have developed a reliable test for CT skills that can be used with children as young as 5.

María Zapata Cáceres

Why do we need to test computational thinking?

Until we can assess something, María argues, we don’t know what children have or haven’t learned or what they are capable of. While testing is often associated with the final stages in learning, in order to teach something well, educators need to understand where their students’ skills are to know what they are aiming for them to learn. With CT being taught in increasing numbers of schools and in many different ways, María argues that it is imperative to be able to test learners on it.

Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

How was the test developed?

One of the key challenges for assessing learning is knowing whether the activities or questions you present to learners are actually testing what you intend them to. To make sure this is the case, assessments go through a process of validation: they are tried out with large groups to ensure that the results they give are valid. María’s and her colleagues’ CT test for beginners is based on a CT test developed by researcher Marcos Román González. That test had been validated, but since it is aimed at 10- to 16-year-olds, María and her colleagues needed to adapt it for younger children and then validate the adapted rest.

Developing the first version

The new test for beginners consists of 25 questions, each of which has four possible responses, which are to be answered within 40 minutes. The questions are of two types: one that involves using instructions to draw on a canvas, and one that involves moving characters through mazes. Since the test is for younger children, María and her colleagues designed it so it involves as little text as possible to reduce the need for reading; instead the test includes self-explanatory symbols.

Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

Developing a second version based on feedback

To refine the test, the researchers consulted with a group of 45 experts about the difficulty of the questions and the test’s length of the test. The general feedback was very positive.

Drawing on the experts’ feedback, María and her colleagues made some very specific improvements to the test to make it more appropriate for younger children:

  • The improve test mandates that an verbal explanation be given to children at the start, to make sure they clearly understand how to take the test and don’t have to rely on reading the instructions.
  • In some areas, the researchers added written explanations where experts had identified that questions contained ambiguity that could cause the children to misinterpret them.
  • A key improvement was to adapt the grids in the original test to include pathways between each box of the maze. It was found that children could misinterpret the maze, for example as allowing diagonal moves between squares; the added pathways are visual cues that it clear that this is not possible.
Screenshot from an online research seminar about computational thinking with María Zapata Cáceres

Validating the test

After these improvements, the test was validated with 299 primary school students aged 5-12. To assess the differences the improvements might make, the students were given different version of the test. María and her colleagues found that the younger students benefited from the improvements, and the improvements made the test more reliable for testing students’ computational thinking: students made fewer errors due to ambiguity and misinterpretation.

Statistical analysis of the test results showed that the improved version of the test is reliable and can be used with confidence to assess the skills of younger children.

What can you use this test for?

Firstly, the test is a tool for educators who want to assess the skills young people have and develop over time. Secondly, the test is also valuable for researchers. It can be used to perform projects that evaluate the outcomes of different approaches to teaching computational thinking, as well as projects investigating the effectiveness of specific learning resources, because the test can be given to children before and again after they engage with the resources.

Assessment is one of the many tools educators use to shape their teaching and promote the learning of their students, and tools like this CT test developed by María and her colleagues allow us to better understand what children are learning.

Find out more & join our next seminar

The video and slides of María’s presentation are available on our seminars page. To find out more about this test, and the process used to create and validate it, read the paper by María and her colleagues.

Our final seminar of this series takes place Tuesday 28 July before we take a break for the summer. In the session, we will explore gender balance in computing, led by Katharine Childs, who works on the Gender Balance in Computing research project at the Raspberry Pi Foundation. You can find out more and sign up to attend for free on our Computing Education Research Seminars page.

The post Testing young children’s computational thinking appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/research-seminar-computational-thinking-test/feed/ 6
What we are learning about learning https://www.raspberrypi.org/blog/what-we-are-learning-about-learning/ Fri, 22 Feb 2019 13:08:08 +0000 https://www.raspberrypi.org/?p=50105 Across Code Clubs, CoderDojos, Raspberry Jams, and all our other education programmes, we’re working with hundreds of thousands of young people. They are all making different projects and learning different things while they are making. The research team at the Raspberry Pi Foundation does lots of work to help us understand what exactly these young…

The post What we are learning about learning appeared first on Raspberry Pi Foundation.

]]>
Across Code Clubs, CoderDojos, Raspberry Jams, and all our other education programmes, we’re working with hundreds of thousands of young people. They are all making different projects and learning different things while they are making. The research team at the Raspberry Pi Foundation does lots of work to help us understand what exactly these young people learn, and how the adults and peers who mentor them share their skills with them.

Coolest Projects International 2018

Senior Research Manager Oliver Quinlan chats to participants at Coolest Projects 2018

We do our research work by:

  • Visiting clubs, Dojos, and events, seeing how they run, and talking to the adults and young people involved
  • Running surveys to get feedback on how people are helping young people learn
  • Testing new approaches and resources with groups of clubs and Dojos to try different ways which might help to engage more young people or help them learn more effectively

Over the last few months, we’ve been running lots of research projects and gained some fascinating insights into how young people are engaging with digital making. As well as using these findings to shape our education work, we also publish what we find, for free, over on our research page.

How do children tackle digital making projects?

We found that making ambitious digital projects is a careful balance between ideas, technology, and skills. Using this new understanding, we will help children and the adults that support them plan a process for exploring open-ended projects.

Coolest Projects USA 2018

Coolest Projects USA 2018

For this piece of research, we interviewed children and young people at last year’s Coolest Projects International and Coolest Projects UK , asking questions about the kinds of projects they made and how they created them. We found that the challenge they face is finding a balance between three things: the ideas and problems they want to address, the technologies they have access to, and their skills. Different children approached their projects in different ways, some starting with the technology they had access to, others starting with an idea or with a problem they wanted to solve.

Achieving big ambitions with the technology you have to hand while also learning the skills you need can be tricky. We’re planning to develop more resources to help young people with this.

Coolest Projects International 2018

Research Assistant Lucia Florianova learns about Rebel Girls at Coolest Projects International 2018

We also found out a lot about the power of seeing other children’s projects, what children learn, and the confidence they develop in presenting their projects at these events. Alongside our analysis, we’ve put together some case studies of the teams we interviewed, so people can read in-depth about their projects and the stories of how they created them.

Who comes to Code Club?

In another research project, we found that Code Clubs in schools are often diverse and cater well for the communities the schools serve; Code Club is not an exclusive club, but something for everyone.

Code Club Athens

Code Clubs are run by volunteers in all sorts of schools, libraries, and other venues across the world; we know a lot about the spaces the clubs take place in and the volunteers who run them, but less about the children who choose to take part. We’ve started to explore this through structured visits to clubs in a sample of schools across the West Midlands in England, interviewing teachers about the groups of children in their club. We knew Code Clubs were reaching schools that cater for a whole range of communities, and the evidence of this project suggests that the children who attend the Code Club in those schools come from a range of backgrounds themselves.

Scouts Raspberry Pi

Photo c/o Dave Bird — thanks, Dave!

We found that in these primary schools, children were motivated to join Code Club more because the club is fun rather than because the children see themselves as people who are programmers. This is partly because adults set up Code Clubs with an emphasis on fun: although children are learning, they are not perceiving Code Club as an academic activity linked with school work. Our project also showed us how Code Clubs fit in with the other after-school clubs in schools, and that children often choose Code Club as part of a menu of after-school clubs.

Raspberry Jam

Visitors to Pi Towers Raspberry Jam get hands-on with coding

In the last few months we’ve also published insights into how Raspberry Pi Certified Educators are using their training in schools, and into how schools are using Raspberry Pi computers. You can find our reports on all of these topics over at our research page.

Thanks to all the volunteers, educators, and young people who are finding time to help us with their research. If you’re involved in any of our education programmes and want to take part in a research project, or if you are doing your own research into computing education and want to start a conversation, then reach out to us via research@raspberrypi.org.

The post What we are learning about learning appeared first on Raspberry Pi Foundation.

]]>
Our 2017 Annual Review https://www.raspberrypi.org/blog/annual-review-2017/ https://www.raspberrypi.org/blog/annual-review-2017/#comments Tue, 20 Mar 2018 14:58:06 +0000 https://www.raspberrypi.org/?p=42467 Each year we take stock at the Raspberry Pi Foundation, looking back at what we’ve achieved over the previous twelve months. We’ve just published our Annual Review for 2017, reflecting on the progress we’ve made as a foundation and a community towards putting the power of digital making in the hands of people all over…

The post Our 2017 Annual Review appeared first on Raspberry Pi Foundation.

]]>
Each year we take stock at the Raspberry Pi Foundation, looking back at what we’ve achieved over the previous twelve months. We’ve just published our Annual Review for 2017, reflecting on the progress we’ve made as a foundation and a community towards putting the power of digital making in the hands of people all over the world.

In the review, you can find out about all the different education programmes we run. Moreover, you can hear from people who have taken part, learned through making, and discovered they can do things with technology that they never thought they could.

Growing our reach

Our reach grew hugely in 2017, and the numbers tell this story.

By the end of 2017, we’d sold over 17 million Raspberry Pi computers, bringing tools for learning programming and physical computing to people all over the world.

Vibrant learning and making communities

Code Club grew by 2964 clubs in 2017, to over 10000 clubs across the world reaching over 150000 9- to 13-year-olds.

“The best moment is seeing a child discover something for the first time. It is amazing.”
– Code Club volunteer

In 2017 CoderDojo became part of the Raspberry Pi family. Over the year, it grew by 41% to 1556 active Dojos, involving nearly 40000 7- to 17-year-olds in creating with code and collaborating to learn about technology.

Raspberry Jams continued to grow, with 18700 people attending events organised by our amazing community members.

Supporting teaching and learning

We reached 208 projects in our online resources in 2017, and 8.5 million people visited these to get making.

“I like coding because it’s like a whole other language that you have to learn, and it creates something very interesting in the end.”
– Betty, Year 10 student

2017 was also the year we began offering online training courses. 19000 people joined us to learn about programming, physical computing, and running a Code Club.

Over 6800 young people entered Mission Zero and Mission Space Lab, 2017’s two Astro Pi challenges. They created code that ran on board the International Space Station or will run soon.

More than 600 educators joined our face-to-face Picademy training last year. Our community of Raspberry Pi Certified Educators grew to 1500, all leading digital making across schools, libraries, and other settings where young people learn.

Being social

Well over a million people follow us on social media, and in 2017 we’ve seen big increases in our YouTube and Instagram followings. We have been creating much more video content to share what we do with audiences on these and other social networks.

The future

It’s been a big year, as we continue to reach even more people. This wouldn’t be possible without the amazing work of volunteers and community members who do so much to create opportunities for others to get involved. Behind each of these numbers is a person discovering digital making for the first time, learning new skills, or succeeding with a project that makes a difference to something they care about.

You can read our 2017 Annual Review in full over on our About Us page.

The post Our 2017 Annual Review appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/annual-review-2017/feed/ 4
Creative computing at Eastwood Academy https://www.raspberrypi.org/blog/creative-computing-at-eastwood-academy/ https://www.raspberrypi.org/blog/creative-computing-at-eastwood-academy/#comments Fri, 01 Jul 2016 11:08:07 +0000 https://www.raspberrypi.org/?p=23689 It’s nearly two years since Computing became a subject for all children in England to study, and we’re now seeing some amazing work to bring opportunities for digital making into schools. Recently I visited Eastwood Academy in Southend-on-Sea, where teacher Lucas Abbot has created a digital making room, and built a community of young programmers…

The post Creative computing at Eastwood Academy appeared first on Raspberry Pi Foundation.

]]>
It’s nearly two years since Computing became a subject for all children in England to study, and we’re now seeing some amazing work to bring opportunities for digital making into schools. Recently I visited Eastwood Academy in Southend-on-Sea, where teacher Lucas Abbot has created a digital making room, and built a community of young programmers and makers there.
Photo 14-06-2016, 12 51 38

Lucas trained as a physics teacher and got hold of a Raspberry Pi for projects at home back in 2012. His head teacher heard about his hobby, and when the move towards all children learning programming started, Lucas was approached to take up the challenge of developing the new subject of Computing in the school. With the help of friends at the local Raspberry Jam, Linux user group, and other programming meetups, he taught himself the new curriculum and set about creating an environment in which young people could take a similarly empowered approach.

In Year 7, students start by developing an understanding of what a computer is; it’s a journey that takes them down memory lane with their parents, discussing the retro technology of their own childhoods. Newly informed of what they’re working with, they then move on to programming with the Flowol language, moving to Scratch, Kodu and the BBC micro:bit. In Year 8 they get to move on to the Raspberry Pi, firing up the fifteen units Lucas has set up in collaborative workstations in the middle of the room. By the time the students choose their GCSE subjects at the end of Year 8, they have experienced programming a variety of HATs, hacking Minecraft to run games they have invented, and managing a Linux system themselves.
Photo 14-06-2016, 10 02 44

Fifteen Raspberry Pi computers have been set up in the centre of the room, at stations specifically designed to promote collaboration. While the traditional PCs around the edges of the room are still used, it was the Pi stations where pupils were most active, connecting things for their projects, and making together. A clever use of ceiling-mounted sockets, and some chains for health and safety reasons, has allowed these new stations to be set up at a low cost.

The teaching is based on building a firm foundation in each area studied, before giving students the chance to invent, build, and hack their own projects. I spent a whole day at the school; I found the environment to be entirely hands-on, and filled with engaged and excited young people learning through making. In one fabulous project two girls were setting up a paper rocket system, propelled using compressed air with a computer-based countdown system. Problem-solving and learning through failure are part of the environment too. One group spent a session trying to troubleshoot a HAT-mounted display that wasn’t quite behaving as they wanted it to.

Lessons were impressive, but even more so was the lunchtime making club which happens every single day. About 30 young people rushed into the room at lunchtime and got started with projects ranging from figuring out how to program a robot Mr Abbot had brought in, to creating the IKEA coffee table arcade machines from a recent MagPi tutorial.
Photo 14-06-2016, 13 04 41

I had a great conversation with one female student who told me how she had persuaded her father to buy a Raspberry Pi, and then taught him how to use it. Together, they got inspired to create a wood-engraving machine using a laser. Lunchtime clubs are often a place for socialising, but there was a real sense of purpose here too, of students coming together to achieve something for themselves.

Since 2014 most schools in England have had lessons in computing, but Eastwood Academy has also been building a community of young digital makers. They’re linking their ambitious lessons with their own interests and aspirations, building cool projects, learning lots, and having fun along the way. We’d love to hear from other schools that are taking such an ambitious approach to computing and digital making.

The post Creative computing at Eastwood Academy appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/creative-computing-at-eastwood-academy/feed/ 9
Meeting educators and learners at Bett 2016 https://www.raspberrypi.org/blog/meeting-educators-and-learners-at-bett-2016/ https://www.raspberrypi.org/blog/meeting-educators-and-learners-at-bett-2016/#comments Wed, 10 Feb 2016 13:21:07 +0000 https://www.raspberrypi.org/?p=19387 For anyone in the education technology community, January is synonymous with Bett. This trade show has been taking place in London for over thirty years, and now sees over thirty thousand educators, students, parents and technology enthusiasts descending on the ExCeL Centre in Docklands to find out about the latest learning technlogies. Raspberry Pi and…

The post Meeting educators and learners at Bett 2016 appeared first on Raspberry Pi Foundation.

]]>
For anyone in the education technology community, January is synonymous with Bett. This trade show has been taking place in London for over thirty years, and now sees over thirty thousand educators, students, parents and technology enthusiasts descending on the ExCeL Centre in Docklands to find out about the latest learning technlogies.

CZUqdcjWYAAqVH7.jpg large

Raspberry Pi and Code Club have been represented at the show before, but for the first time we had our own area together in the new ‘STEAM village’ section of the show. Although the name may suggest a return to Victorian age technology, this area was about promoting the crossover subjects of Science, Technology, Engineering, the Arts and Mathematics. We took over a whole side of this village, with a dedicated workshop area and table stations showcasing many of our programmes.

Our area was packed, with back-to-back workshops every thirty minutes that often had standing room only. We ran sessions on everything from how to start a Code Club in your school, to how to get started programming a Sense HAT and using the GPIO. Hundreds of people took part in a half-hour workshop, and a few keen ones stayed most of the day! Almost half of those at the Code Club workshops planned to start their own club after taking part.

Yasmin

It was amazing to have members of the Raspberry Pi community join us to lead workshops, including Raspberry Pi Certified Educators, Raspberry Pi Creative Technologist Andrew Mulholland, and European Digital Girl of the Year Yasmin Bey.

Thanks to Alan O’Donohoe, Stephen Manson, Cat Lamin, Mike Trebilcock, Graham Bowman, Andrew Mulholland, Neil and Toby Bizzell, and Sam Aaron for running workshops for us.

Raspberry Pi Foundation and Code Club staff were also presenting all over the show on computing and digital making. Carrie Anne Philbin presented on how teachers are changing the gender narrative in computer science and on digital making across the UK.

Creativity in the digital classroom

A highlight of the show for me was seeing Sam Aaron showing the power of Sonic Pi in the main arena. Working entirely from a Raspberry Pi with an IQ Audio Pi-DAC+ HAT, Sam rocked the several hundred people in the arena with both his music and his message: that programming is a new form of creative expression.

 

Sam Aaron in the Arena

Throughout the show we talked to thousands of enthusiastic educators and learners. Staff on the Code Club stand alone had in-depth conversations with over 1500 people on starting clubs in their communities. I really enjoyed hearing from so many people who came to the stand to chat about the projects they had made themselves or with their students. I snapped a few of them with my own PiZero powered RetroPiCam project, and got talking to many more about their plans to start Code Clubs in their schools.

Philip & Carrie Anne on RetroPiCam

CZgTF-EW0AABnzd.jpg large

We also talked to a lot of people looking to get started with Raspberry Pis. Luckily for them we had thousands of copies of both Carrie Anne Philbin’s book Adventures in Raspberry Pi and a special educators’ edition of The MagPi, both full of ideas for learning and teaching with a Pi. As with all editions of The MagPi, you can get your hands on a free PDF here if you missed out at the show.

Saturday saw the first ever Raspberry Jam at Bett, organised by Ben Nuttall. The Pi community took over one of the learning theatres, bringing line-following robots, pirate ships, and a whole host of other creative Pi projects. Many members of the Pi community from across the country came to meet up, and passers-by at the show joined in too.

CZZvmoEXEAA30nl.jpg large

I’ve been visiting Bett for years. I’m used to the busy aisles and the enthusiasm of educators about the world of technology, but I was still blown away by the numbers of people who came to see us and the strength of their enthusiasm for Raspberry Pi and Code Club.

What’s great about this show is that most of the people you speak to work directly with children or young people. The enthusiasm we saw will translate into many opportunities for them to learn about computing and digital making.

Bett 2016 survivors' photo

Thanks to all the team at the Raspberry Pi Foundation and Code Club for the hard work they put into the show. From planning for the show, to running workshops and spending whole days on stands, these events take a lot of work and energy. Thanks to everyone for making this huge event such a success.

The post Meeting educators and learners at Bett 2016 appeared first on Raspberry Pi Foundation.

]]>
https://www.raspberrypi.org/blog/meeting-educators-and-learners-at-bett-2016/feed/ 5